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Abstract
For the general non-degenerate multimode multiphoton Jaynes–Cummings
(JC) model, including any forms of intensity-dependent coupling, field-
dependent detuning and field nonlinearity, we obtain its energy eigenvalues
and eigenstates via the supersymmetric unitary transformation (SUT) method.
In addition, its pseudo-invariant eigen-operator (PIEO) is also found, which
directly leads to the energy-level gap.

PACS numbers: 03.65.−w, 42.50.−p

1. Introduction

The interaction of atoms with an electromagnetic field is attracting much attention from
many researchers in the field of quantum optics [1–3]. The simplest physical situation can
be described by the well-known Jaynes–Cummings (JC) model [4], where the interaction
of a single two-level atom with one cavity field mode near resonance is studied under the
condition of the rotating-wave approximation and exhibits many interesting quantum effects.
Over many years, the extensions of the basic JC model have included intensity-dependent
coupling constants [5], two-photon or multi-photon transitions [6], two cavity modes [7] for
three-level atoms as well as more complex systems [8] and so on. In the investigations of these
models, it is a basic task to get their energy spectra and eigenstates. However, these systems,
which can be solved both exactly and analytically, are very limited because many differential
equations are hardly solvable, so researchers have been trying to find other ways to overcome
this obstacle. In [9], it was proposed that the JC model can be solved by a supersymmetric
unitary transformation (SUT). Subsequently some authors [10] further applied this method
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to calculate the eigenvalues and eigenstates for some other JC models. Xu et al [11] used a
dynamical algebraic method to obtain the solutions for some modified JC Hamiltonian. In very
recent works [12], Fan et al have reported invariant eigen-operator (IEO) theory and further
extended the pseudo-invariant eigen-operator (PIEO) method. It is worth mentioning that the
PIEO method may more simply obtain the energy levels of some generalized JC models [13].

In this paper, based on the above ideas, we further use the SUT method and the PIEO
method to study the non-degenerate general JC model, which consists of an effective two-level
atom with a bare transition frequency ω0 and quantized multimodels of a lossless cavity with
different frequencies ωi , respectively. In the rotating-wave approximation, the Hamiltonian
of this system is given by (setting h̄ = 1)

Hm =
m∑

i=1

ωiNi +
1

2
ω0G({Ni})σz + R({Ni}) + χ [Amf ({Ni})σ+ + f ({Ni})A†

mσ−], (1)

which includes any form of intensity-dependent coupling, field-dependent detuning and field
nonlinearity, where A

†
m = ∏m

j=1 a
†
j (for the degenerate case A

†
m = a†m) are m-photon transition

operators, and σz is the two-level (denoted by |−〉 and |+〉) atomic inversion operator, defined
as

σz =
(

1 0
0 −1

)
, σ+ =

(
0 1
0 0

)
, σ− =

(
0 0
1 0

)
(2)

obeying

[σz, σ±] = ±2σ±, [σ+, σ−] = σz. (3)

The ith field mode (i = 1, 2, . . . , m) is characterized by bosonic creation and annihilation
operators a

†
i and ai. Here G({Ni}) ≡ G(N1, N2, . . . , Nm), R({Ni}) ≡ R(N1, N2, . . . , Nm) and

f ({Ni}) ≡ f (N1, N2, . . . , Nm) are Hermitian operators and they are any reasonable functions
of the photon number operators Ni = a

†
i ai . G({Ni}) denotes the field-dependent detuning,

R({Ni}) represents the field nonlinearity item, and χf ({Ni}) represents the intensity-dependent
atom–field coupling. Such a model of the atom–cavity interaction may have a realization in
an experiment of a continuous-wave maser operating on a multiphoton transition between
Rydberg levels; it is expected that the maser oscillates with about one atom and a few tens of
microwave photons at any time in the cavity.

This model in equation (1) is a fairly general form. For instance, we consider the m = 2
case, namely, the two-mode two-photon Jaynes–Cummings (TTJC) model. If f = G = 1
and R = 0, it reduces to the conventional non-degenerate TTJC model [14]. If R = 0,
it recovers as the intensity-dependent non-degenerate TTJC model [15]. It reduces to the

model used by Gao et al [16] when R = 0, G = 1 and f =
√

a
†
1a1a

†
2a2. As f = G = 1,

R = 1
4ε1

(
a
†
1a1

)2
+ 1

4ε2
(
a
†
2a2

)2
+ εa

†
1a1a

†
2a2, we recover the non-degenerate TTJC model inside

a high-Q cavity field with a Kerr-like medium [17]. In section 2, our main task is to define
the supersymmetric generators to rewrite the Hamiltonian in equation (1) and diagonalize
the JC model to obtain the energy eigenvalues and eigenstates. In section 3, based on the
expression via supersymmetric generators, we go on searching for its so-called PIEO, which
may directly lead to its energy-level gap. Section 4 concludes our paper with a summary and
some discussion.

2. Supersymmetric generators and diagonalization for the general JC Hamiltonian

In order to construct the supersymmetric unitary transformation operator, we first denote the
supersymmetric generators as

2
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Q ≡ f (Ni)A
†
mσ− =

(
0 0

f (Ni)A
†
m 0

)
(4)

Q† ≡ Amf (Ni)σ+ =
(

0 Amf (Ni)

0 0

)
(5)

N ′ ≡ Amf 2(Ni)A
†
mσ++ + f 2(Ni)A

†
mAmσ−−

=
(

Amf 2(Ni)A
†
m 0

0 f 2(Ni)A
†
mAm

)
, (6)

where

σ++ ≡ σ+σ− = 1
2 (1 + σz), σ−− ≡ σ−σ+ = 1

2 (1 − σz),

so that N,Q,Q† constitute the supersymmetric generators and satisfy the commutation and
anticommutation relations

Q2 = Q†2 = 0, [Q†,Q] = N ′σz, (Q† − Q)2 = −N ′,
[N ′,Q] = [N ′,Q†] = 0, [Q,σz] = 2Q, [Q†, σz] = −2Q†, (7)

{Q,σz} = {Q†, σz} = 0, {Q,Q†} = N ′.

In terms of the generators, we can rewrite the Hamiltonian equation (1) as

Hm =
m∑

i=1

(
Mi − 1

2

)
ωi − 1

2

m∑
i=1

ωiσz +
1

2
ω0G({Mi − σ++})σz

+ R({Mi − σ++}) + χ(Q + Q†), (8)

where Mi = Ni + σ++ is a constant of motion and obeys the commutation relations

[Mi,N
′] = [Mi,Q] = [Mi,Q

†] = 0. (9)

Using the property σ 2
++ = σ++, it is easily obtained that

G({Mi − σ++}) =
∞∑
l=1

G(l)({0})
l!

[
Ml

i + (Mi − 1)lσ++ − Ml
i σ++

]
= G({Mi}) + [G({Mi − 1}) − G({Mi})]σ++

= G+({Mi}) + G−({Mi})σz, (10)

in which

G+({Mi}) = 1
2 [G({Mi − 1}) + G({Mi})], (11)

G−({Mi}) = 1
2 [G({Mi − 1}) − G({Mi})]. (12)

Similarly,

R({Mi − σ++}) = R+({Mi}) + R−({Mi})σz, (13)

R+({Mi}) = 1
2 [R({Mi − 1}) + R({Mi})], (14)

R−({Mi}) = 1
2 [R({Mi − 1}) − R({Mi})]. (15)

From equations (10)–(15), equation (8) may be re-expressed as

Hm = Hm0 + 1
2�({Mi})σz + χ(Q + Q†), (16)

3
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where

Hm0 =
m∑

i=1

(
Mi − 1

2

)
ωi +

1

2
G−({Mi})ω0 + R+({Mi}), (17)

�({Mi}) = 2R−({Mi}) + G+({Mi})ω0 −
m∑

j=1

ωj . (18)

Now, with the help of the supersymmetric transformation generators mentioned above,
we diagonalize the Hamiltonian in equation (16). The supersymmetric unitary transformation
operator is defined as

T = exp

{
−θ

2
N ′−1/2(Q† − Q)

}
, (19)

where θ is a function of operators Mi to be determined later, and N ′1/2 is

N ′−1/2 =
⎛
⎝ 1√

Amf 2({Ni })A†
m

0

0 1√
f 2({Ni })A†

mAm

⎞
⎠ . (20)

Considering a†f (aa†) = f (a†a)a†, af (a†a) = f (a†a + 1)a, we easily get

[N ′−1/2,Q†] = [N ′−1/2,Q] = [N ′−1/2,Mi] = 0. (21)

Therefore, from equations (7) and (21), equation (19) may be expanded to the following form:

T = cos
θ

2
− N ′−1/2(Q† − Q) sin

θ

2
, (22)

so

T −1 = cos
θ

2
+ N ′−1/2(Q† − Q) sin

θ

2
= T †. (23)

Using equations (7), (22) and (23), it then follows that

T −1Hm0T = Hm0, (24)

T −1(Q† + Q)T = (Q† + Q) cos θ + N ′1/2σz sin θ, (25)

and

T −1σzT = σz cos θ − N ′−1/2(Q† + Q) sin θ. (26)

Based on the above equations, equation (16) can be easily solved by T −1,

H ′
m = T −1HmT

= Hm0 +
[
χ cos θ − 1

2�({Mi})N ′−1/2 sin θ
]
(Q + Q†)

+
[
χN ′1/2 sin θ + 1

2�(Mi) cos θ
]
σz. (27)

Formally, if we annihilate the second term of equation (27) by letting

1

N ′1/2
tan θ = 2χ

�({Mi}) , (28)

we can obtain the diagonalized Hamiltonian as follows:

H ′
m = Hm0 + 1

2

√
�2({Mi}) + 4χ2N ′σz. (29)

4
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Note that equation (28) should be understood in the sense of the eigenvalue equation for the
operators Mi and N ′. The corresponding eigenstates of H ′

m are

|�′
1〉 = |n1〉 ⊗ |n2〉 ⊗ · · · ⊗ |nm〉 ⊗ |+〉

≡
(|n1, n2, . . . , nm〉

0

)
, (30)

|�′
2〉 = |n1 + 1〉 ⊗ |n2 + 1〉 ⊗ · · · ⊗ |nm + 1〉 ⊗ |−〉

≡
(

0
|n1 + 1, n2 + 1, . . . , nm + 1〉

)
, (31)

and the eigen-equations of H ′
m are given by

H ′
m|�′

1〉 = [Em0({ni}) + Em1({ni})]|�′
1〉, (32)

H ′
m|�′

2〉 = [Em0({ni}) − Em1({ni})]|�′
2〉, (33)

where

Em0({ni}) ≡ Em0(n1, n2, . . . , nm)

=
m∑

i=1

(
ni +

1

2

)
ωi +

1

2
G−({ni + 1})ω0 + R+({ni + 1}), (34)

Em1({ni}) ≡ Em1(n1, n2, . . . , nm)

= 1

2

√√√√�2({ni + 1}) + 4χ2f 2({ni + 1})
m∏

j=1

(nj + 1). (35)

Then the energy-level gap for this system is

�E = 2Em1({ni}) =
√√√√�2({ni + 1}) + 4χ2f 2({ni + 1})

m∏
j=1

(nj + 1). (36)

From the above analysis, the corresponding eigenvalues and eigenstates of Hm in
equation (1) are given by, respectively,

Em+ = Em0({ni}) + Em1({ni}), (37)

|�1〉 = T |�′
1〉 = cos

(
θ

2

)
|�′

1〉 + sin

(
θ

2

)
|�′

2〉, (38)

Em+ = Em0({ni}) − Em1({ni}), (39)

|�2〉 = T |�′
2〉 = cos

(
θ

2

)
|�′

2〉 − sin

(
θ

2

)
|�′

1〉, (40)

where

cos

(
θ

2

)
= 1√

2

√
1 +

�({ni + 1})
2Em1({ni}) , (41)

sin

(
θ

2

)
= 1√

2

√
1 − �({ni + 1})

2Em1({ni}) . (42)

It should be pointed out that the states
( 0

|n1,0,...,0〉
)
,
( 0

|0,n2,...,0〉
)
, . . . ,

( 0
|0,0,...,nm〉

)
, which are

not included in the above discussion, are also eigenstates of Hm.
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3. Finding the pseudo-invariant eigen-operator for the general JC Hamiltonian

To begin with, we briefly review and explain the so-called PIEO method [12]. Let us trace back
the original idea of the Schrödinger quantization scheme, where the identification i d

dt
↔ Ĥ

(Hamiltonian), so i d
dt

is named the Schrödinger operator in many references. Similarly, we
have

(
i d

dt

)n ↔ Ĥ n; now we set up the n-order differential equation for an operator Ôe,(
i
d

dt

)n

Ôe = λÔe. (43)

When n = 1, it looks like the equation i d
dt

ψ = Ĥψ(h̄ = 1). Thus, equation (43) is called the
n-order invariant eigen-operator equation with the n-order eigenvalue. Using the Heisenberg
equation i d

dt
Ôe = [Ôe, Ĥ ] (h̄ = 1) , equation (43) is rewritten as(

i
d

dt

)n

Ôe = [. . . [[Ôe, Ĥ ], Ĥ ] . . . , Ĥ ] = λÔe. (44)

If such an Ôe is found, n
√

λ is called the energy-level gap. When for some Hamiltonian the
n-fold commutator [. . . [[Ôe, Ĥ ], Ĥ ] . . . , Ĥ ] in equation (44 ) is not proportional to Ôe, it
seems that the next (n + 1)-fold commutator will not produce a constant multiplied by Ôe

either; then if there exists some state-vector space spanned by |φ〉i in which the equation
[. . . [[Ôe, Ĥ ], Ĥ ] . . . , Ĥ ]|φ〉i = λÔe|φ〉i holds; in this limited space Ôe is called the pseudo-
invariant eigen-operator of Ĥ . Usually, |φ〉i is the eigenvector of conservative quantities of
the dynamic system which commute with the Hamiltonian. Then, the equation(

i
d

dt

)n

Ôe|φ〉i = λÔe|φ〉i (45)

may lead us to obtain some information of energy gap of the Hamiltonian.
Next, based on the above Hamiltonian in equation (16) described by the supersymmetric

generators, we will search for its PIEO and derive its energy-level gap. We first assume that
the PIEO of Hamiltonian in equation (16) possesses the form

Ôe = α(Q† + Q) + βσz, (46)

where α and β are undermined constants. Using the relations in equations (7) and (21), we
calculate

i
d

dt
Ôe = [Ôe, Ĥ ] = [α�({Mi}) − βχ ](Q − Q†). (47)

Further calculation shows(
i

d

dt

)2

Ôe = [α�({Mi}) − βχ ][�({Mi})(Q† + Q) − χN ′σz]. (48)

Comparing the right-hand side of equation (48) with equation (46), it is unlikely that Ôe

in equation (46) can satisfy the eigen-operator equation (44) for the n = 2 case. However,
according to the PIEO theory, with the two sides of equation (48) acting on the eigenstates
|�′

l〉(l = 1, 2) of N ′ and Mi in equations (30) and (31), we have(
i

d

dt

)2

Ôe|�′
l〉 = 4[α�({ni + 1}) − βχ ]

[
�({ni + 1})(Q† + Q)

−χf 2({ni + 1})
m∏

j=1

(nj + 1)σz

]
|�′

l〉, (49)

6
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which is in a form like equation (45). From equations (47) and (50), we obtain

α = − �({ni + 1})
χf 2({ni + 1})∏m

j=1(nj + 1)
β. (50)

Thus in the Hilbert space spanned by the eigenstates
∣∣�′

l

〉
, we may determine the expression

of Ôe,

Ôe = − �({ni + 1})
χf 2({ni + 1})∏m

j=1(nj + 1)
β(Q† + Q) + βσz, (51)

which is called a pseudo-invariant eigen-operator given in equation (16). Substituting
equations (49) and (51) into equation (45), we get

λ = �2({ni + 1}) + 4χ2f 2({ni + 1})
m∏

j=1

(nj + 1), (52)

and further obtain the energy-level gap for this system as

√
λ =

√√√√�2({ni + 1}) + 4χ2f 2({ni + 1})
m∏

j=1

(nj + 1) = 2Em1({ni}), (53)

which coincides with the eigen-energy of H in equation (36).
From the above discussion, in order to get the PIEOs, the key point is to find the

conservative quantities of the corresponding model.

4. Conclusions

In summary, as described by the supersymmetric generators, we have diagonalized the
Hamiltonian of the non-degenerate multimode multi-photon Jaynes–Cummings (JC) model,
including any forms of intensity-dependent coupling, field-dependent detuning and field
nonlinearity, and obtain its energy eigenvalues and eigenstates. In addition, based on the
theory of PIEO, we have also found its pseudo-invariant eigen-operator and directly derived
the energy-level gap. It is shown that our methods obtain the energy-level gap formula more
directly and clearly than the usual Schrödinger approach. In this sense, we may say that
supersymmetry is a natural language to depict the general JC model. These general results
and methods adapt to the given mode and any specific forms of intensity-dependent coupling,
field-dependent detuning and field nonlinearity. For instance, as m = 2, R = 0, G = 1 and

f =
√

a
†
1a1a

†
2a2, its energy-level gap is

�E′ = 2
√

(ω0 − ω1 − ω2)2 + 4[χ(n1 + 1)(n2 + 1)]2,

which is the model used by Gao et al [16]. For the non-degenerate TTJC model with a
Kerr-like medium in [17], i.e. f = G = 1, R = 1

4ε1
(
a
†
1a1

)2
+ 1

4ε2
(
a
†
2a2

)2
+ εa

†
1a1a

†
2a2, the

result becomes

�E′′ = 2
√

�2(n1 + 1, n2 + 1) + 4χ2(n1 + 1)(n2 + 1),

where �(n1 + 1, n2 + 1) = ω0 − ε − ∑2
j=1

[( εj

2 + ε
)
nj + ωj + εj

4

]
. We believe that these

general results will further enrich the investigations of the nonlinear dynamical and statistical
properties of this kind of system.
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